Five projects pave the way for the audacious goal of restoring vision to the blind
Five bold projects will develop new technology to non-invasively image cells of the eye in unprecedented detail. The National Eye Institute (NEI) announced the awards as part of its Audacious Goals Initiative. NEI has committed $3.8 million to the projects in 2015 and up to $17.9 million over the next five years, pending the availability of funds. NEI is part of the National Institutes of Health.
The NEI Audacious Goals Initiative is a coordinated effort to spur new therapies for blinding diseases. The central audacious goal is to restore vision by regenerating neurons and neural connections in the eye and visual system. Special emphasis is devoted to cells of the retina, including the light-sensitive rod and cone photoreceptors, and the retinal ganglion cells, which connect photoreceptors to the brain via the optic nerve.
“These ambitious projects will give us a window into the visual system,” said NEI Director Paul A. Sieving, M.D., Ph.D. “Tools developed will enhance the study of functional changes in the retina and optic nerve, in real-time and at the cellular level, and will be indispensable when evaluating new regenerative therapies for eye diseases.”
Many causes of incurable blindness affect retinal neurons. Among the hundreds of rare inherited disorders that damage the retina are retinitis pigmentosa and Stargardt disease. Common causes include age-related macular degeneration and glaucoma.
“We have entered the research phase of the Audacious Goals Initiative. Projects in this first round of AGI funding will bridge gaps in current technology, enabling later phases of the initiative,” said Dr. Sieving, who is making a detailed announcement of the grants at the 2015 Association for Research in Vision and Ophthalmology annual meeting.

The five projects include:

  • Interferometric Optophysiology of the Human Retina (U01 EY025501)
    Principal investigator: Austin Roorda, Ph.D., University of California, Berkeley
    Dr. Roorda and colleagues are designing a system to map the interaction of cells in the retina. The system will enable scientists to stimulate individual neurons and observe other cells as they become active in response. Mapping these intricate signaling patterns will help explain how the retina processes visual information before it is sent to the brain, and will be an important tool for monitoring function in regenerated cells. The system will incorporate eye tracking components and adaptive optics, a technology that corrects for distortion imposed by the cornea and lens………                                                                                                                                                                                                                                                                                                                                       Read more: http://www.nih.gov/news/health/may2015/nei-01.htm                                                                                                                                                                                                                            Source: National Institutes of Health (NIH)                                                                                                                                                                                                                                                                                                                     
On