USC Eye Institute researchers use Human Connectome Project brain mapping techniques to unlock mysteries that can lead to vision-restoring therapies

LOS ANGELES, Feb. 25, 2016 /PRNewswire/ — The University of Southern California (USC) Eye Institute researchers are part of a multidisciplinary, collaborative USC team that recently received a $4 million grant from the National Eye Institute (NEI) to investigate how the human brain is affected by blinding eye diseases. The cross-school USC research team includes clinician-scientists in ophthalmology, psychology, neurology and neuroimaging working together in an effort to accelerate future treatments and therapies to restore sight.
The team will use the world’s most advanced retinal imaging combined with the comprehensive brain mapping techniques developed in the ambitious Human Connectome Project – originally funded through $40 million in grants by the National Institute of Health (NIH) in 2010 – to unlock the mysteries of the brain as it relates to vision loss.
The four-year brain mapping research initiative, “Human Connectomes in Low Vision, Blindness and Sight Restoration,” is led by principal investigator Bosco S. Tjan, PhD, director of the Laboratory for Functional and Computation Vision and co-director of theUSC Dornsife Cognitive Neuroimaging Center, who is joined by USC Eye Institute clinician-scientists including co-investigators:James Weiland, PhD; Amir H. Kashani, MD, PhD; Andrew Moshfeghi, MD, MBA; Lisa Olmos de Koo, MD, MBA and Vivek Patel, MD. Other USC colleagues involved in the project include Meng Law, MBBS, and Yonggang Shi, PhD.
“The brain mapping research will provide a baseline that in turn allows a more comprehensive understanding of conditions that affect the retina and the downstream consequences in the central visual pathways and with this knowledge, we can better treat visual impairments,” said Dr. Weiland, who is both a USC professor of ophthalmology as well as of biomedical engineering. “We’ll achieve this through creation of an enormous database of information that ultimately provides a better roadmap to optimize current vision restoration treatments such as Argus II implants for retinitis pigmentosa patients, stem cells to help with age-related macular degeneration or surgical precision to treat tumors on the optic nerve.”…..
Read more and watch the video:
Source: PR News and USC Eye Institute